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Abstract

This paper presents a dynamic programming method
called Trajectory Policy-Iteration (TPI), which is able to
find sensitive (average and multiple-order bias) optimal
policies in polynomial time. TPI is designed to estimate
the value function of multi-chain Markovian Decision
Processes (MDPs) under unbounded (potentially infi-
nite) time-horizon, when the transition function is de-
terministic (DMDPs). The algorithm takes advantage of
the MDP structure, estimating the utility of state-action
pairs by identifying circuits and transient paths inside the
process, and then calculating the expected average re-
wards of such segments (gain and bias). The different
orders of bias optimality are assessed using a very intui-
tive technique, where each higher order value is calcula-
ted based on the cumulated value of its immediate lower
order. Such principle allows the proposition of an inno-
vative exact policy-iteration algorithm, and constitutes
an original interpretation to understand the meaning of
multiple-order bias optimality. The viability of the me-
thod is supported by experimental results.

1 Introduction

Most Dynamic Programming (DP) and Reinforce-
ment Learning (RL) methods are based on the dis-
counted optimality criterion. In this setting, an opti-
mal policy maximizes the sum of discounted rewards
over time using a discount factor γ. When conside-
ring an unbounded time-horizon, the use of discoun-
ted cumulative rewards constitutes an important key
on guaranteeing polynomial time convergence for such
methods [2].

However, the use of discounted rewards is not always
appropriate for recurrent problems (i.e. where terminal
states do not exist) [20, 16, 25]. For such scenarios,
maximizing the average reward per step (average or
gain optimality) is, in some sense, more natural.

An example of such incongruence is the crawling ro-
bot problem [26]. In this problem, the rewards are pro-

portional to the forward displacements. The behavior
normally expected from an intelligent robot is moving
forward as fast as possible. However, depending on the
discount factor, the discounted-optimal policy will not
necessarily correspond to the one that maximizes the
velocity. In other words, an intuitively optimal policy
can be seen as sub-optimal under the discounted fra-
mework. Other examples of this issue are given in [16].

If, on the one hand, average optimality fits better
than the discounted optimality for recurrent problems,
on the other hand, it has the undesirable property of
being underselective. There may be several average-
optimal policies which are not necessarily equivalent.
Average optimality cannot distinguish between poli-
cies that present the same average reward but which
have different initial transient rewards [18].

A more selective criterion called bias optimality can
take such transient differences into account [18]. To be
able to find a bias-optimal policy, iterative methods
must approximate the expected average reward per
step of the average-optimal policies, and then approxi-
mate the difference (or the bias) between the value
of each state-action pair and that average. In other
words, after finding the set of policies that achieve the
primary objective of maximizing the long-run average
reward, such methods search for that which also maxi-
mizes the short-run reward [14].

But bias optimality is still underselective. For a gi-
ven MDP, several different bias-optimal policies can be
found. The optimality criterion may be then refined to
select a kind of second order bias-optimal policy, then
a third order bias-optimal policy and so on [27, 4]. Such
framework is called sensitive-optimality [17]. The limit
order in which the optimal policies can no longer be
differentiated corresponds to the Blackwell-optimality
[3]. Such optimal policies are proved to be equivalent
to the ones achieved using discounted optimality when
the discount factor γ approaches 1 [11].

This paper proposes an original algorithm for fin-



ding optimal sensitive (average and multiple-order
bias) reward policies for DMDPs (MDPs presenting
deterministic transitions). The method, called Tra-
jectory Policy-Iteration (TPI), works like the classic
Policy-Iteration method [12], but instead of having a
single real value associated to each state or state-action
pair, TPI stocks the information relative to the trajec-
tory within the process.

The main contribution of this work is the use of
a more structured information (the trajectory) to re-
present the value of a state or state-action pair. We
present the operations needed for using such structure
inside a specific version of the policy-iteration method,
and we show how the proposed algorithm can find
multiple-order bias optimal policies.

The rest of the paper is organized as follows : Section
2 reviews related DP and MDP concepts and methods,
Section 3 introduces the proposed method, Section 4
presents experimental results, and Section 5 concludes
the paper.

2 Background

Dynamic Programming (DP) refers to a set of al-
gorithms that can efficiently compute optimal policies
for Markovian Decision Processes (MDPs), providing
essential foundations for Reinforcement Learning (RL)
methods [24, 21].

2.1 Markovian Decision Processes

The Markovian Decision Process (MDP) is in the
center of a widely-used framework for approaching au-
tomated control, sequential decision-making, planning,
and computational reinforcement learning problems
[20, 24, 28, 8]. MDPs are sometimes called Control-
lable Markov Chains. Deterministic MDPs (DMDPs),
the focus of this paper, constitute the particular set
of MDPs that present deterministic transitions. A
DMDP can be formally defined as a tuple M =
{S,A, T,R} where :

S = {s1, s2, ..., s|S|} is the finite set of states,

A = {a1, a2, ..., a|A|} is the finite set of actions,

T (s, a) = s′ is the transition function

R(s, a, s′) = r is the reward function

A DMDP is typically represented by a discrete fi-
nite state machine : at each time step the machine is
in some state s, the agent observes that state and in-
teracts with the process by choosing some action a to
perform, then the machine changes into a new state
s′ and gives the agent a corresponding reward r. The
transition function T defines the system dynamics by
determining the next state s′ given the current state

s and the executed action a. The reward function R
defines the immediate reward r ∈ R after transition
from state s to s′ with action a. The reward function
can be stochastic, and in this case R can represent the
mean reward. If the set of allowed actions is different
for each state, a further function E(s) ⊆ A must be
defined, where E(s) constitutes the subset of allowed
actions for each state s.

A deterministic stationary policy π is a mapping
between states and actions in the form π(s) = a, so
as π : S → A. The policy defines the agent behavior.
The number of policies contained in Π, the set of pos-
sible policies, is exponential in the number of states,
corresponding to |Π| = |A||S|. Solving an MDP means
finding the policy of actions that maximizes the re-
wards received by the agent over time, according to
some precise optimality criterion. When reward and
transition functions are given, the MDP can be solved
by dynamic programming. Such problem is generally
referred to as planning.

2.2 Optimality Criteria

The definition of an optimal policy depends on the
considered time-horizon, and on the method used to
calculate utilities. In this paper, we are concerned with
unbounded, potentially infinite, time-horizon. In that
setting, the MDP is recurrent : there are no terminal
states. The MDP corresponds to a Finite Transition
System.

2.2.1 Discounted Optimality

When the agent has an infinite or unbounded time-
horizon, the standard solution consists in evaluating
policies using discounted cumulative rewards, where a
discount factor {γ ∈ R | 0 ≤ γ < 1}, sometimes cal-
led interest rate, vanishes the utility of future rewards
compared to immediate rewards.

The value (or utility) of a given state s, for a given
policy π, and for a given discount factor γ, is defined
as follows :

V πγ (s) =
∞∑

t=1

γt−1Rπt (s) (1)

where Rπt (s) corresponds to the reward received in
time t starting from the state s and following the policy
π.

The value of the discounted cumulative rewards is
always finite, which guarantees the convergence of ite-
rative methods to an optimal solution [21]. Conside-
ring fixed discount factors, there is always at least one
optimal policy that can be defined for any MDP. An
optimal policy π∗ is a policy that cannot be improved :



∀s ∈ S . ∀π ∈ Π . V π
∗

γ (s) ≥ V πγ (s) (2)

2.2.2 Average (or Gain) Optimality

In many domains, there is no natural interpreta-
tion for the discount factor γ. Even worst, in recur-
rent domains (where later rewards are as much impor-
tant as earlier rewards) such criterion can distort the
real utility of some sequences of actions. That situa-
tion is exemplified by the crawling robot problem [26].
Since the undiscounted sum of rewards can diverge on
infinite time-horizon, the average reward received per
time step becomes a preferable optimality criterion for
this kind of problems [16, 25]. The average reward (or
gain) starting on state s and following a policy π is :

∀s ∈ S . ∀π ∈ Π . gπ(s) = lim
k→∞

1

k

k∑

t=1

Rπt (s) (3)

The convenience of average optimality compared to
discounted optimality can be observed regarding the
DMDPs illustrated in the figures 1 and 2. On both
problems, depending on the discount factor, the best
policy under discounted-optimality can correspond to
clearly worst solutions on the long run. The intuitively
best policies for both DMDPs would be b, which are
average-optimal for each respective problem.

Figure 1 – The gain of the policy starting on the state
x (on the center), and choosing the action a is ga = 0,
which corresponds to the reward of the recurrent state
y (on the left). The alternative policy is choosing the
action b, which leads to the state z (on the right). Such
policy presents gb = +1 and is gain-optimal. However,
the discounted optimal policy for any discount factor
γ ≤ 0.99 is a. In fact b becomes better than a after
100 execution steps and up to the infinity.

In multi-chain MDPs, considering an infinite time-
horizon, there is a convergent average reward for each
communicant subset of states (i.e. for each recurrent
class) within the process. Considering unichain MDPs,
the average reward of a given policy π converges to a
single value gπ independently of the starting state [21].
An average-optimal policy π∗ is a policy that maxi-
mizes the expected gain on the long-term run :

∀s ∈ S . ∀π ∈ Π . gπ
∗
(s) ≥ gπ(s) (4)

Figure 2 – The gain of the policy starting on the
state x (on the center) and choosing the action a is
ga = +0.45 (the average per step on the circuit {x, z},
on the right). The action b presents gb = +0.5 (the ave-
rage per step on the circuit {x, y}, on the left) and is
gain-optimal. However, the discounted optimal policy
for any discount factor γ < 0.9 is a. In fact b becomes
definitely better than a after 20 execution steps and
up to the infinity.

2.2.3 Bias Optimality

In recurrent DMDPs, the use of average optimality
conduces the agent to an optimal circuit within the
process. However, average optimality does not take
into account different initial transient rewards [18].
It means that, even though the gain gπ of a po-
licy π is mathematically independent of the starting
state s (considering infinite time-horizon and unichain
MDPs), the total expected reward for a given time
t = k, in general, is not. It is due to the fact that
the rewards obtained in the transient path toward the
optimal circuit disappear on the long-run averaging.

An example of that issue is given in the figure 3.
Both policies a and b converge to a common average
reward as time approaches infinity, but the sum of re-
wards corresponding to each policy for any finite time-
horizon is not equivalent. Choosing a offers a better
transient initial reward, and would be preferred over
b.

Figure 3 – The gain of both policies is equivalent
(ga = gb = +1) but the transient paths correspond
to different bias (ha = 0 − 1 = −1 and hb = +10 −
1 = +9). In this case, both policies a and b are gain-
optimal, but only b is bias-optimal.

That difference (or bias) can be used as an auxiliary
optimality criterion in order to compare states outside
the optimal circuit. Bias-optimal policies are, among
all gain-optimal policies, the ones which also optimize
such transient initial rewards [14]. The combination of
bias and gain enables the agent to optimally reach an
optimal circuit from every state in a DMDP.



The bias corresponds to the sum of the differences
between the value of each state-action pair and the
average [14]. For that reason it is sometimes called
averaged adjusted sum of rewards [16]. Since states in
the recurrent class will be visited forever, the expected
average reward cannot differ across these states. Since
the transient states will never be reentered, they can at
most accumulate a finite total reward before reaching
a recurrent state.

The bias hπ(s) of a given policy π starting from state
s is the cumulative difference between the rewards re-
ceived following the given policy and its average re-
ward :

∀s ∈ S . ∀π ∈ Π . hπ(s) =
∞∑

t=1

(Rπt (s)− gπ) (5)

A policy π∗ is bias-optimal if it is gain-optimal and
also maximizes bias values for all states compared to
all other possible policies :

∀s ∈ S . ∀π ∈ Π .

{
gπ

∗
(s) > gπ(s) ∨

gπ
∗
(s) = gπ(s) ∧ hπ

∗
(s) ≥ hπ(s)

(6)
The bias of a transient path represents its total re-

ward until reaching a recurrent class. This has the ef-
fect of treating the recurrent class as a single state and
confining the bias analysis to the transient states. But
distinguishing the time inside the recurrent cycle at
which the rewards are received is necessary [14].

2.2.4 Sensitive Optimality

Even the relative bias optimality can be underselec-
tive, and higher order bias can be necessary to reach
the maximum sensitivity. Such issue can be observed
regarding the example in figure 4.

Figure 4 – The gain of both policies is equivalent
(ga = gb = 0). The constant bias of both policies is also
equivalent (ha = hb = +2). The relative bias of both
policies is necessarily equivalent, given the fact that
both policies enter into the same circuit at the same
state. The cumulated reward following both policies
is equivalent at any time, except in time t = 2, when
policy b presents a bigger cumulated reward compared
to a.

In the same way that bias-optimality constitutes a
complementary criterion in order to select among all
average optimal policies, it is possible to select se-
cond order bias-optimal policies, then third order bias-
optimal policies and so on [4, 14]. Such framework
is called sensitive-optimality [17]. The limit order in
which the optimal policies cannot be longer distingui-
shed corresponds to the Blackwell-optimality [3] and
such optimal policies are proved to be equivalent to
the ones achieved using discount-optimality when the
discount factor γ approaches 1 [11].

In fact, for a given MDP, there is a discount fac-
tor γ∗ from which the optimal policies do not change.
Blackwell-optimal policies are discount-optimal poli-
cies for any γ ≥ γ∗.

Sensitive optimality can be assessed by discounting
discount factors that tend to 1. It is called n-discount-
optimality, where {n ∈ Z | n ≥ −1} [27]. In such
approach, −1-discount optimality corresponds to the
average optimality, 0-discount optimality corresponds
to the first order bias optimality, 1-discount optimality
corresponds to the second order bias optimality, and
so on.

There is an n∗ from which the optimal policies do
not change. Blackwell-optimal policies are n-discount-
optimal policies for all n ≥ n∗. The number of bias
orders necessary to distinguish all policies cannot be
greater than the number of states in the MDP, so as
n∗ < |S| [13].

A similar approach is the n-average optimality [23],
which is equivalent to the n-discount optimality [13].
In this setting, the nth-order gain gπ,n of a given policy
π over infinite time-horizon is defined as :

lim
t→∞

gπ,nt =

{
1/t

∑t
k=1R

π
k for n = −1

1/t
∑t
k=1 g

π,n−1
k for n ≥ 0

(7)

2.3 Dynamic Programming

Dynamic Programming (DP) refers to optimization
methods which can be used to efficiently compute op-
timal policies of Markov Decision Processes (MDPs)
when a model is given [1, 2, 21]. Classic DP methods
typically presents polynomial-time convergence, even
if the space of possible policies is exponential in re-
lation to the number of state-action pairs. DP me-
thods can be adapted as model-based reinforcement
learning (RL) methods, and provide essential intui-
tions for model-free RL methods. The key idea of DP,
and of RL in general, is the use of value (or utility)
functions to organize and structure the search for op-
timal policies [24].
Value-Iteration (VI) [1] and Policy-Iteration (PI)

[12] are the two fundamental and widely used DP al-



gorithms. It had been demonstrated that PI converges
at least as quickly as VI [20], and, in practice, PI has
been remarkably successful and shown to be most ef-
fective [15].

There is a significant research effort for understan-
ding the complexity of PI. The demonstration of its
tight upper and lower bounds is still an open problem.
Considering stochastic MDPs under discounted opti-
mality, with a fixed discount rate 0 ≤ γ < 1, PI is pro-
ved to be strongly polynomial [29, 22], i.e. the number
of operations required to compute an optimal policy
has an upper bound that is polynomial in the num-
ber of state-action pairs. Inside each iteration, PI uses
at most O(|E| · |S|) = O(|S|2 · |A|) arithmetic ope-
rations. Unfortunately, the convergence time increases
with rate 1

1−γ [29]. It constitutes a major impediment

for using high discount factors (γ → 1) in practice.
Typically, average optimization is a more difficult pro-
blem than discounted optimization [6]. PI can need
an exponential number of iterations under average-
optimality for stochastic MDPs [7].

Deterministic MDPs can be viewed as weighted di-
rected graphs, and solving such DMDPs is essentially
equivalent to find minimum mean-cost cycles. For this
reason, and contrarily to stochastic MDPs, determi-
nistic MDPs under average-optimality can be solved
in strongly polynomial-time, O(|E|·|S|) = O(|S|2 ·|A|)
[19]. Experimental studies suggest that PI works very
efficiently in this context [5]. The number of iterations
performed by PI when applied to a weighted directed
graph seems to be at most the number of edges in
the graph [10], then limited to O(|E|). In addition, for
deterministic MDPs, the number of arithmetic opera-
tions inside each iteration is at most O(|E|) [10].

3 Proposed Solution

Within every finite DMDP M , every policy π ∈
Π(M) contains at least one closed cyclic set of states-
action pairs (i.e. at least one recurrent class of states).
Given a policy π, any state s ∈ S must be, either part
of a circuit, or part of a transient path leading to a
circuit. It can be demonstrated by the fact that any
directed graph having one exiting edge per node (like
a policy) must present at least one cycle [9]. If M is
unichain, an optimal policy π∗ will present a single
optimal circuit, where the other states lead to, like
illustrated in figure 5.

For each state-action pair, Trajectory Policy-
Iteration (TPI) estimates a cruise value (g), represen-
ting the average reward per time step in the periodic
part of the walk, and a sprint value (f), representing
the average reward per time step in the transient part
of the walk. The cruise value is the average in the cir-

Figure 5 – The optimal circuit is the one with the
best average reward per cycle within the MDP. The
optimal transient path is the best one to reach the
optimal circuit.

cuit, just another name for the gain. The sprint value
is the average in the transient path, then representing
something slightly different from the bias. The bias is
the sum of the differences between the reward of each
state in the transient path and the average in the cir-
cuit. The sprint is just the initial average in the tran-
sient part of the walk, regardless of the average in the
circuit.

Such values are represented inside a special struc-
ture called trajectory. The basic TPI main loop, Po-
licyIteration is described in the algorithm 1. Given
any initial policy π0, the algorithm iterates calculating
the value of the current policy πi, and then greedily
improving it for all states where an improvement is
possible, as described by the algorithm 2, ImprovePo-
licy.

Algorithm 1 PolicyIteration(S,A,R, T )

π0 ← InitializePolicy()
repeat
Qi ← EvaluatePolicy(πi)
πi+1 ← ImprovePolicy(πi, Qi)

until πi+1 = πi

Algorithm 2 ImprovePolicy(πi,Qi)

for all s ∈ S do
Vi(s) = Qi(s, πi(s))
if maxa[Qi(s, a)] > Vi(s) then
πi+1(s)← arg maxa[Qi(s, a)]

else
πi+1(s)← πi(s)

end if
end for

The initial policy is typically initialized using an
uniform distribution over the possible actions for each
state. At this level, the proposed method (defined by
algorithms 1 and 2) corresponds exactly to the original
Policy-Iteration method [12]. The novelty introduced



by TPI is the use of a structured value to represent
the set of utilities.

In the rest of the section, we define such struc-
ture (the trajectory), as well as the necessary methods
and operations in order to implement the Trajectory
Policy-Iteration method (i.e. how to evaluate a given
policy, how to compare, and how to compose trajecto-
ries).

3.1 Trajectory

A trajectory corresponds to a structure in the form
τπ(x) = 〈v/n : z : w/m〉. It represents the trajectory
τ which starts in the state x and follows the policy
π. Such trajectory reaches the state z after n steps
through a transient path where a total reward v is
cumulated, and then enters into a circuit with per-
iod m where a total reward w is cumulated. A trajec-
tory is exemplified in the figure 6. In TPI, V (s) values
(the state utilities) as well as Q(s, a) values (the state-
action utilities) are trajectories.

Considering a given trajectory τ = 〈v/n : z : w/m〉,
the cruise (or gain) corresponds to the average reward
per step within the circuit, if the circuit is defined,
otherwise the cruise is zero. Similarly, the sprint cor-
responds to the average reward per step on the tran-
sient path.

Figure 6 – On the top we can observe a sample tra-
jectory within some DMDP, where, starting from the
state x, with action a, and following the policy π af-
terward, the process reaches state z in n = 3 steps,
cumulating rewards up to a value of v = +3, then en-
tering in a circuit composed by m = 2 states where
a reward equivalent to w = +1 can be cumulated at
each completed lap. That trajectory is represented as
τ(x, a) = 〈+3/3 : z : +1/2〉, and corresponds to a
cruise of g = +0.5 and a sprint of f = +1. Note that
the chosen reference state is z and not s, because it
is the state which represents the better utility to this
trajectory, given that 〈+3/3 : z : +1/2〉 > 〈+1/2 : s :
+1/2〉.

3.2 Policy Evaluation

The value of a given policy π is iteratively calcula-
ted by the algorithm 4, based on both the reward and
the transition functions (R and T ). The value Qπj (s, a)
represents the trajectory calculated at the iteration j
for the state s. The trajectory starts on the state s,
where the action a is executed. The policy π deter-
mines the actions on the other states. The algorithm
converges to the exact Q at worst in 2 · |S| iterations.
|S| steps can be necessary to find the biggest circuit (if
a circuit that passes by all states exists in the process),
and then more |S| steps can be necessary to find the
reference state.

At the beginning, when j = 0, all the state-action
pairs are initialized with the corresponding immediate
transition and reward, as explained in algorithm 3.
At each new iteration, such values are recalculated
by incrementing the immediate trajectory with the
next step trajectory, which implies either in growing
the transient path, or in defining a circuit. Such com-
position of trajectories is defined in the algorithm 5,
and explained in the figure 7. Thus, before conver-
gence, the trajectory corresponding to the utility of
some state-action pair will be in one of the following
situations : (a) τ(x, a) = 〈v/n : z : 0/0〉 : an open
transient path toward some yet unknown circuit, (b)
τ(x, a) = 〈0/0 : x : w/m〉 : the starting point of a cir-
cuit, or (c) τ(x, a) = 〈v/n : z : w/m〉 : a path leading
to a circuit.

At the convergence, all the state-action pairs must
be closed, being either in the case (b) or in the case
(c), i.e. all the state-action pairs must know a circuit.
Furthermore, the circuits as well as the paths must be
optimal.

Algorithm 3 InitializeUtilities()

for all (x ∈ S, a ∈ A) do
y = T (x, a)
r = R(x, a, y)

Q0(x, a)←
{
〈0/0 : x : r/1〉 if (y = x)

〈r/1 : y : 0/0〉 if (y 6= x)

end for

Algorithm 4 PolicyEvaluation(π)

Q0 ← InitializeUtilities()
repeat
for all (x ∈ S, a ∈ A) do
τ ← IncrementTrajectory(x, a, π)
Qj+1(x, a)← max{Qj(x, a), τ}

end for
until Qj+1 = Qj



Algorithm 5 IncrementTrajectory(x,a,π)

y = T (x, a)
r = R(x, a, y)
Vj(y) = Qj(y, π(y)) = 〈v/n : z : w/m〉

τ ←





〈0/0 : x : r/1〉 if (y = x)

〈0/0 : x : (v + r)/(n+ 1)〉 if (y 6= x = z)

〈(v + r)/(n+ 1) : z : w/m〉 if (y 6= x 6= z)

Qj+1(x, a)← τ

Figure 7 – The intuition behind the IncrementTra-

jectory method.

3.3 Trajectory Comparison

To be able to execute the algorithms 1 and 4, we
must define how the function max can be applied to
trajectories. It means defining how two trajectories can
be compared. Two given trajectories τa and τb can
be compared based on their relative quality to each
other, which determines if the utility represented by
τa is greater, fewer or equivalent to the utility of τb.
The quality is not an absolute property of a given tra-
jectory, but a comparative value relative to another
trajectory. It is given by the algorithm 6.

Algorithm 6 Quality(τa,τb)

τa = 〈va/na : za : wa/ma〉
τb = 〈vb/nb : zb : wb/mb〉
k ← max(na +ma, nb +mb)
ua ← na · fa + (k − na) · ga

qa ←





+∞ if (ma = 0) ∧ (mb > 0)

−∞ if (ma > 0) ∧ (mb = 0)

fa if (ma = 0 = mb = 0)

ga if (ma,mb > 0) ∧ (ga 6= gb)

ua if (ma,mb > 0) ∧ (ga = gb) ∧ (ua 6= ub)

−na if (ma,mb > 0) ∧ (ga = gb) ∧ (ua = ub)

When two given trajectories are closed (i.e. have de-
fined circuits), they can be compared regarding their
cruise. In the long run, the trajectory with better
cruise must always be preferred. In case of equivalent

cruise, the sprint is used for tie-breaking. However,
simply comparing sprints is not sufficient to correctly
compare two trajectories with equivalent cruise. The
example illustrated in the figure 8 presents two trajec-
tories with equivalent cruise, and where the trajectory
with smaller sprint is better. It is because both sprints
have a worst average compared to the cruise, and in
this case it is better to chose the shortest transient
path.

Figure 8 – Both trajectories τa = 〈+3/3 : z : +3/1〉
and τb = 〈−1/1 : z : +3/1〉 have the same cruise
(ga = gb = +3), but the first one presents a better
sprint (fa = +1 > fb = −1). Despite this, the re-
ward cumulated by τb will be ever superior to the re-
wards cumulated by τa from the moment which both
have completed at least one lap within their respective
circuits. In the example, it corresponds to four steps
(k = 4). At that time, the runner in τa will have trave-
led all the transient path, entered into the circuit, and
just completed its first lap, and the runner in τb will
be completing its third lap. It means that τb is better
than τa after four steps, even if its sprint is lower :∑4
t=1 r

τa
t = 6 <

∑4
t=1 r

τb
t = 8.

When the cruise of both trajectories is the same
ga = gb = g, it is possible to take the cumula-
ted value (based on the averages f and g) of each
trajectory considering a common time-horizon, k =
max(na + ma, nb + mb). At time k, both trajectories
will have completed at least one lap in the periodic
part of the walk (in the circuit). Because the cruise is
the same, when both trajectories are running in the
circuit, their average distance does not change. Thus,
the best trajectory is the one that arrives in time k
with a greater cumulated reward. In other words, com-
paring such trajectories on the infinite time-horizon is
equivalent to comparing them in time k.

When the operation max is called inside the Poli-

cyIteration method (algorithm 1), only closed tra-
jectories are compared. The trajectories are complete
at that level. But to execute the PolicyEvaluation

method (algorithm 4), the comparison must be done
also considering open trajectories. In order to guaran-
tee that the construction of a trajectory will not stop
at the first circuit found, open trajectories must be
preferred over closed trajectories. If both trajectories
are still open at a given iteration, they can be compa-
red regarding their sprint.



3.4 High-order values

The first-order cruise gπ(s) of a given state s repre-
sents the average reward of the policy π in the limit of
infinite time. After convergence, that value must cor-
respond to the average reward into an optimal-circuit.
The first-order sprint fπ(s) represents the average re-
ward on the transient path, and it must represent the
best path toward an optimal-circuit.

The intuition for computing high-order values comes
from the idea of comparing two different trajectories
by placing two hypothetical runners on the starting
state of each trajectory, and then simply comparing
who must necessarily be the winner in a long race,
i.e. the one that cumulates more reward given a com-
mon horizon. The first criterion, as explained, is the
cruise. If trajectory τa presents a greater cruise than
trajectory τb, then there exist a time k? from when∑k
t=1 r

τa
t >

∑k
t=1 r

τb
t for all k > k?, where rτt is the

expected immediate reward in time t inside the trajec-
tory τ . Such situation is exemplified in figures 1 and
2.

If the cruise of both compared trajectories is equi-
valent, then the distance between the two runners (the
average difference considering their positions) will not
change once they are both running within their res-
pective (and cruise equivalent) circuits. In this case,
the transient initial running difference must be com-
pared, but it cannot be done by a simple sprint com-
parison. We must verify who is further away in the
moment when both runners have completed at least
one lap within their respective circuits. In the particu-
lar DMDP presented in figure 3, the sprint can be used
alone to capture such difference. This is possible be-
cause, in that example, both transient paths have the
same size, and both runners (corresponding to the two
alternative policies) enter in their circuits (of equiva-
lent cruise) at the same time. The figure 8 presents an
example where the trajectory having the higher sprint
is not the best one.

To understand the meaning of such different orders,
an analogy can be made with the relation between the
different displacement derivatives (position, velocity,
acceleration, jerk, etc.). When we consider a single or-
der of values, the successive rewards represent the dif-
ferent velocities at each elapsed time step, and the cu-
mulated reward corresponds to the traveled distance.
If some object a presents a bigger average velocity than
some object b, then a must have traveled a bigger dis-
tance than b. However, having equivalent average velo-
cities does not imply traveling the same distance. It is
for this reason that higher-order values are necessary
to distinguish two trajectories.

With two orders of values, the successive rewards
can be compared to the acceleration. In a race, the

object with the biggest average acceleration must be
the winner. However, two objects with the same ave-
rage acceleration will not necessarily present the same
average velocity. Even if that objects present the same
average acceleration and also the same average velo-
city, it does not mean that both will travel the same
distance.

In the worst case, two trajectories may require |S|-
order values to be distinguished. To be able to eva-
luate and find policies in a o-order bias quality, each
trajectory must stock o pairs of v and w values. In
the figure 9 we can see how two trajectories can be
compared using the second-order values.

Figure 9 – Comparing two trajectories with different
path sizes and circuit periods using the second-order
values.

4 Experimental Results

In a first set of experiments, we verify the conver-
gence of the PolicyEvaluation method (algorithm
4). The number of iterations (j) necessary for conver-
gence (max and average) is given for experiments with
DMDPs of size |S| varying from 2 to 100, and fixed
|A| = 1. Because there is a unique possible action for
each state, the process constitutes a Markov Chain,
which is equivalent to a policy. For each setting, 10000
DMDPs have been randomly generated, with integer
rewards varying between 0 and |S|. We can see in fi-
gure 10 that, in practice, the worst cases are always
below the suggested theoretical limit. The number of
iterations is never greater than 2 · |S|. Following the
results, bigger is the number of states in the DMDP,
lower is the number of iterations necessary to evaluate
a policy. This is due to the way the DMDPs are gene-
rated, where the period of the created circuits tends



to be much smaller than the number of states.

Figure 10 – Convergence time for the PolicyEvalua-
tion method.

In a second set of experiments, we verify the conver-
gence of the proposed TPI method. The same kind of
DMDPs have been generated, this time using |A| = 2.
As expected, polynomial convergence performances
are shown in figure 11.

Figure 11 – Average number of iteration necessary for
convergence using TPI, experimenting with DMDPs
of size |S| varying from 2 to 100, and fixed |A| = 2.
For each setting, 10000 DMDPs have been randomly
generated, with integer rewards varying between 0 and
|S|.

The performance of TPI using 1st and 3rd-order va-
lues has been compared to a discounted version of
the policy-iteration algorithm using a discount factor
γ = 0.9. Figure 12 shows the number of times when
TPI(3rd-order) beats PI(γ = 0.9), the number of times
when TPI(1st-order) beats PI(γ = 0.9) (which means
the number of times PI(γ = 0.9) was not able to find
an average-optimal policy), and the number of times
PI(γ = 0.9) beats TPI(3rd-order) (which means the
number of times TPI(3rd-order) was not able to find

a Blackwell-optimal policy). These performances are
based on the cumulated reward of each policy, over a
time-horizon equivalent to |S|2, starting on each pos-
sible different state.

Figure 12 – Compared performances for TPI(3rd-
order), TPI(1st-order), and PI(γ = 0.9).

5 CONCLUSION

This paper presented Trajectory Policy-Iteration
(TPI), an original dynamic programming method
able to find exact optimal policies for determinis-
tic MDPs over unbounded time-horizon using average
and multiple-order bias optimality. To the best of our
knowledge, the proposed method is the first dynamic
programming algorithm based on the representation
of trajectories inside a DMDP.

This paper also presents an original meaning for the
multiple-order bias optimality. Firstly, interpreting the
gain and the bias of two different policies as, respecti-
vely, the cruise velocity and the initial sprint velocity
of two runners in a race. A second analogy compares
the different orders of bias to the different derivatives
of displacement in kinematics (velocity, acceleration,
jerk, etc.). In a fixed-time race, if a runner presents an
average acceleration superior to all the other runners,
he/she must be the winner. If two runners present the
same average acceleration, the winner is the one with
biggest average velocity.

The experiments presented on this paper have de-
monstrated promising results, indicating that the ideas
implemented in TPI can constitute a viable way
for dealing with infinite DMDPs. The next steps
of research include formally proving the convergence
bounds and extend the method to stochastic MDPs
and factored MDPs. In the same way, TPI can be
converted into a RL method.
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[23] K. Sladký. On the set of optimal controls for mar-
kov chains with rewards. Kybernetika, 10(4) :350–
367, 1974.

[24] R.S. Sutton and A.G. Barto. Introduction to
Reinforcement Learning. MIT Press, 1998.

[25] P. Tadepalli. Average-reward reinforcement lear-
ning. In C. Sammut and G.I. Webb, editors,
Encyclopedia of Machine Learning, pages 64–68.
Springer, 2010.

[26] M. Tokic, J. Fessler, and W. Ertel. The crawler,
a class room demonstrator for reinforcement lear-
ning. In Proceedings of the 22nd FLAIRS, pages
160–165. AAAI Press, 2009.

[27] A. Veinott. Discrete dynamic programming with
sensitive discount optimality criteria. Ann. Math.
Stat., 40(5) :1635–1660, 1969.

[28] M. Wiering and M. Otterlo. Reinforcement lear-
ning and markov decision processes. In Reinfor-
cement Learning : State-of-the-Art, pages 3–42.
Springer, 2012.

[29] Y. Ye. The simplex and policy-iteration methods
are strongly polynomial for the markov decision
problem with a fixed discount rate. Math. Oper.
Res., 36(4) :593–603, 2011.


